Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available August 20, 2026
-
ABSTRACT Flying insects solve a daunting control problem of generating a patterned and precise motor program to stay airborne and generate agile maneuvers. In this motor program, each muscle encodes information about movement in precise spike timing down to the millisecond scale. Whereas individual muscles share information about movement, we do not know whether they have separable effects on an animal's motion, or whether muscles functionally interact such that the effects of any muscle's timing depend heavily on the state of the entire musculature. To answer these questions, we performed spike-resolution electromyography and electrical stimulation in the hawkmoth Manduca sexta during tethered flapping. We specifically explored how flight power muscles contribute to pitch control. Combining correlational study of visually induced turns with causal manipulation of spike timing, we discovered likely coordination patterns for pitch turns, and investigated whether these patterns can drive pitch control. We observed significant timing change of the main downstroke muscles, the dorsolongitudinal muscles (DLMs), associated with pitch turns. Causally inducing this timing change in the DLMs with electrical stimulation produced a consistent, mechanically relevant feature in pitch torque, establishing that power muscles in M. sexta have a control role in pitch. Because changes were evoked in only the DLMs, however, these pitch torque features left large unexplained variation. We found this unexplained variation indicates significant functional overlap in pitch control such that precise timing of one power muscle does not produce a precise turn, demonstrating the importance of coordination across the entire motor program for flight.more » « lessFree, publicly-accessible full text available December 15, 2025
-
Latham, Peter E. (Ed.)Sensory inputs in nervous systems are often encoded at the millisecond scale in a precise spike timing code. There is now growing evidence in behaviors ranging from slow breathing to rapid flight for the prevalence of precise timing encoding in motor systems. Despite this, we largely do not know at what scale timing matters in these circuits due to the difficulty of recording a complete set of spike-resolved motor signals and assessing spike timing precision for encoding continuous motor signals. We also do not know if the precision scale varies depending on the functional role of different motor units. We introduce a method to estimate spike timing precision in motor circuits using continuous MI estimation at increasing levels of added uniform noise. This method can assess spike timing precision at fine scales for encoding rich motor output variation. We demonstrate the advantages of this approach compared to a previously established discrete information theoretic method of assessing spike timing precision. We use this method to analyze the precision in a nearly complete, spike resolved recording of the 10 primary wing muscles control flight in an agile hawk moth, Manduca sexta . Tethered moths visually tracked a robotic flower producing a range of turning (yaw) torques. We know that all 10 muscles in this motor program encode the majority of information about yaw torque in spike timings, but we do not know whether individual muscles encode motor information at different levels of precision. We demonstrate that the scale of temporal precision in all motor units in this insect flight circuit is at the sub-millisecond or millisecond-scale, with variation in precision scale present between muscle types. This method can be applied broadly to estimate spike timing precision in sensory and motor circuits in both invertebrates and vertebrates.more » « less
An official website of the United States government
